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The nonlinear response of a nematic slab subjected to a rectilinear low-frequency oscillatory Couette and
Poiseuille flow is investigated theoretically. We find that under Poiseuille flow and with appropriate alignment
conditions by surface anchoring and/or magnetic field a state with slow, spontaneous director rotation appears.
This may provide a model for the slow director rotations observed in high-frequency Couette flow.

PACS number~s!: 61.30.Cz, 61.30.Gd, 64.70.Md, 47.20.2k

I. INTRODUCTION

In nematic liquid crystals the coupling between the pre-
ferred molecular orientation~director n̂) and the velocity
field leads to interesting flow phenomena. In a steady veloc-
ity field u(z) along thex axis ~rectilinear plane shear flow,
typically of the Couette or Poiseuille type! the director will,
in the absence of other orienting effects, tend to align in the
x-z plane ~shear plane! at the Leslie angle
u f l56tan21(a3 /a2)

1/2 with thex axis for positive/negative
shear rate]u/]z if a3 /a2.0. Herea3 ,a2 are Leslie vis-
cosities@1#. In typical low-molecular weight materials with
rodlike molecules one hasa3 /a2'0.01. In the usual layer
geometry the director is anchored at the boundaries and then
one may have interesting instabilities and transitions that
have been studied in the past; see, e.g.,@1–5#. Also the non-
aligning casea3 /a2,0, which is found in some materials,
in particular, near a nematic-smectic transition, has been
studied. Then one finds a transition to tumbling motion
which has also attracted much attention@6–8#.

Here we are concerned with oscillatory flow where
u(z,t) oscillates symmetrically around zero, which has prop-
erties quite different from the steady case. We will consider
only situations where the director lies initially in the shear
plane. Most typically one deals with a planar~in the plane of
the layer, also called homogeneous! or homeotropic~perpen-
dicular to the layer plane! orientation. For low-frequency
Couette flow~viscous penetration depthAh/rv larger than
the cell thicknessd) with its linear velocity profile~uniform
shear rate! the director oscillates initially between two posi-
tions, which in the flow-aligning case are bounded by the
alignment angles6tan21(a3 /a2)

1/2 as the oscillation ampli-
tude becomes large@9#. With increasing flow amplitude one
then tends to find experimentally transitions to roll states
@10–12#, which are not understood very well@12,13# ~in the
theory the elastic coupling has been neglected, which is a
questionable approximation at low frequencies!. Actually a
simpler mechanism arises when the shear is made elliptical
~or circular as a special case!, by applying oscillations
x(t)5x0sinvt, y(t)5y0cosvt to one of the confining plates

~or by applying the two rectilinear components to the two
plates!, and this situation has been studied intensively in the
past@5,14–17#. The threshold calculated there diverges when
the elliptic excitation degenerates into a rectilinear one
(y050 or x050).

In Couette flow with ultrasonic frequencies, where one
has strong deviations from the linear velocity profile, a tran-
sition from the homeotropically aligned state to a state with a
slowly rotating planar component of the director and various
wave phenomena~‘‘autowaves’’! have been found experi-
mentally@18,19#, which are still not understood. We are not
aware of experiments on flow-alignment instabilities in os-
cillatory Poiseuille flow.

Here we will consider theoretically low-frequency Cou-
ette and Poiseuille flow and confine ourselves to states that
are spatially uniform in the plane of the layer. Thus roll
transitions are excluded~they will be discussed elsewhere!.
In previous work we have analyzed the time-averaged~over
the oscillation period! torques acting on the director in spa-
tially homogeneous situations, i.e., with neglect of boundary
conditions@20,21#. For low-frequency Couette flow there are
no torques whereas for Poiseuille flow there are torques di-
rected away from the flow-alignment angles and, for
u.u f l , away from the shear plane. Besides the weakly
stable planar staten̂5 x̂ ~for flow-aligning materials! there
exists a stationary attractor out of the shear plane. It was
confirmed by numerical simulations that with homeotropic
boundary conditions above a critical flow amplitude an out-
of-plane transition indeed occurs leading to the new station-
ary state@21#.

Our present work confirms that homogeneous transitions
occur only under Poiseuille flow~and more general flows
with nonuniform shear rate! and, for the standard material
MBBA ~4-methoxybenzylidene-48-n-butylaniline!, only
with nonplanar alignment~homeotropic or oblique!. After
formulating the problem in Sec. II in terms of the standard
Erickson-Leslie equations we start out in Sec. III with the
simplest possible situation, namely, oblique alignment at one
of the flow-alignment angles~under oscillatory flow the two
angles correspond to equivalent states!. This orientation cor-
responds to the only in-plane solution with time-independent
director. One can showanalytically that this state remains
stable for ~low-frequency! Couette flow but suffers an in-
plane instability under Poiseuille flow at a critical flow am-
plitudeAc .
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From numerical simulations, whose presentation we defer
to Sec. V, we find that the bifurcation corresponding to the
instability is subcritical~the attractor collides with a saddle!
and the time-averaged~over the flow period! director can
move towards a~nearly! homeotropic orientation, which,
however, is unstable with respect to out-of-plane fluctuations
@21#. In fact, the system relaxes to a stationary out-of-plane
state, which exists already for amplitudes below the critical
one. In this subcritical regime, for decreasing amplitude, the
out-of-plane state loses stability through a Hopf bifurcation
giving rise to a slow limit-cycle solution with rotating direc-
tor. The limit cycle disappears via a homoclinic bifurcation
from the in-plane saddle-point solution that exists for
A,Ac .

Unfortunately this interesting scenario can only be traced
numerically. However, a much simpler but analogous situa-
tion arises when the prealignment is induced by a magnetic
field instead of surface anchoring. Disregarding boundaries
the previously introduced time-averaging approach can then
be used@20,21# and is presented in Sec. IV. The resulting
ordinary differential equations allow a phase space analysis
and also exhibit the scenario with the slow director rotation.

As discussed in Sec. VI, our results provide a mechanism
to understand the slow director rotation found in high-
frequency experiments@18,19#. Moreover, one can devise
experimentally more accessible situations for low-frequency
Poiseuille flow where the combined action of planar surface
anchoring and an oblique magnetic field also lead to the slow
oscillations.

II. BASIC EQUATIONS

We consider the nematic layer of thicknessd to be con-
fined between two infinite parallel plates. If one of the plates
is fixed and the other plate oscillates periodically in a parallel
direction one obtains oscillatory Couette flow. Oscillatory
Poiseuille flow is realized when an alternating pressure gra-
dient is applied in a direction parallel to the layer. We look
for solutions of the nematodynamic equations where the di-
rectorn̂ and the velocityv̂ are functions only of the distance
z from the boundaries and timet and then one can write

nx5cosu cosf, ny5sinf, nz5sinu cosf,

vx5u~z,t !, vy5v~z,t !, vz50 . ~1!

Clearly the incompressibility condition and normalization
n̂251 are satisfied.u(z,t) is the angle with respect to the
x axis within the flow plane (x-z plane! andf(z,t) is the
out-of-plane angle.

We use a length scaled and a time scale 1/v with v/2p
the frequency of oscillatory flow, so that the dimensionless
variables are

z̃ 5z/d, t̃ 5vt, ũ 5u/dv, ṽ 5v/dv. ~2!

The equations governing the alignment and the flow taking
into account a magnetic fieldĤ5H(mx ,my ,mz) with
m̂251 can be written as@1,22#

u ,t2K~u!u,z2
l

12l
cosu tanfv ,z

5e@a1~u,f!u ,zz1a2~u,f!u ,z
2 1a3~u,f!f ,zz

1a4~u,f!f ,z
2 1a5~u,f!u ,zf ,z1a6~u,f,m̂!h2#, ~3!

du,t52p0,x1]z$2~12l!K~u!cos2fu ,t

2~12l!K8~u!M ~f!f ,t12c2~u,f!cosuM

3~f!v ,z1@c1~u,f!1c2~u,f!cos2u cos2f#u,z%, ~4!

f ,t2K8~u!M ~f!u,z2sinu
cos2f2l sin2f

12l
v ,z

5e@b1~u,f!u ,zz1b2~u,f!u ,z
2 1b3~u,f!f ,zz

1b4~u,f!f ,z
2 1b5~u,f!u ,zf ,z1b6~u,f,m̂!h2#, ~5!

dv ,t5]z$22l cosuM ~f!u ,t2sinu~cos2f2l sin2f!f ,t

12c2~u,f!cosuM ~f!u,z1@c1~u,f!

1c2~u,f!sin2f#v ,z%, ~6!

where the tildes have been omitted and

K~u!5
l cos2u2sin2u

12l
, l5

a3

a2
,

M ~f!5
1

2
sinf cosf, d5

d2

l 2
, e5

1

tdv
, l5A2a2

rv
,

td5
g1d

2

K11
, g15a32a2 , h5

H

HF
, HF5

p

d
A K11

m0xa
.

~7!

Here the Parodi relation@23#

a62a55a31a2 ~8!

has been used. The notationf ,i[] f /] i , f 8(g)[] f /]g has
been used throughout and the coefficientsai(u,f),
bi(u,f), ci(u,f) are given in Appendix A.HF is the splay–
Fréedericksz-transition field,l the viscous penetration depth,
andtd the ~splay! director relaxation time.

Boundary conditions for the velocitiesu and v for the
oscillatory Couette flow are

u~z511/2!5a cost, u~z521/2!50,

v~z561/2!50 , ~9!

wherea5A/d with A the displacement amplitude. The~di-
mensionless! pressure gradientp0,x in Eq. ~4! is zero. In the
case of Poiseuille flow one has a dimensionless pressure gra-
dient p0,x5d/(2a2v)(DP/Dx)cost (DP/Dx is the applied
pressure gradient in physical units! and

u~z561/2!50 , v~z561/2!50 . ~10!

This is to be supplemented by the boundary conditions for
the director.
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III. STABILITY OF THE FLOW-ALIGNMENT SOLUTION

Let us first consider the case of zero magnetic field
(h50). Analytic progress is possible for the special case
u5u f l , f50 at z561/2, whereu f l is the flow-alignment
angle (tan2u f l5l). Then one has the simple flow-alignment
solution u5u f l , u5u0(z,t), f50, v50 of Eqs. ~3!–~6!,
whereu0(z,t) ~our basic state! satisfies the equation

du0,t52p0,x1Q~u f l !u0,zz, ~11!

with

2~2a2!Q~u!5a41~a52a2!sin
2u

1~a31a612a1sin
2u!cos2u. ~12!

In order to analyze the stability of the basic state Eqs.~3!–
~6! are linearized with respect to the in-plane and out-of-
plane perturbations:

u5u f l1u1~z,t !, u5u0~z,t !1u1~z,t !, f5f1~z,t !,

v5v1~z,t !. ~13!

In the low-frequency range to be considered here one has
d!1 (r'103 kg/m3, 2a2'1021 N s/m2, and d
'1024 m gives d,1 for frequencies f,1 kHz! and
it seems reasonable to neglect the inertial terms in Eqs.~4!,
~6!, and~11!. Then from Eq.~11! one has for the basic state
in Couette flow

u05a~z11/2!cost, u0,z5a cost, ~14!

and in Poiseuille flow

u05a~4z221!cost, u0,z5a8z cost. ~15!

In both casesa is the maximal flow amplitude. Eliminating
the velocity componentv1 one is left with (u1 , u1 do not
couple tof1 , v1)

u1,t2K8~u f l !u0,zu15eP1~u f l !u1,zz, ~16!

f1,t2

1
2 K8~u f l !R~u f l !~12l!2N~u f l !sinu f l

R~u f l !~12l!2sin2u f l
u0,zf1

5eP2~u f l !
R~u f l !~12l!

R~u f l !~12l!2sin2u f l
f1,zz, ~17!

where

P1~u!5cos2u1k3sin
2u, P2~u!5k2cos

2u1k3sin
2u,

2~2a2!R~u!5a41~a52a2!sin
2u,

2~2a2!N~u!5~a31a612a1sin
2u!cosu ~18!

and the boundary conditions are

u1~z561/2!50 , f1~z561/2!50. ~19!

Equations~16! and ~17! are uncoupled, so they give two
independent criteria for stability with respect tou1 andf1

perturbations. Since Eqs.~16! and~17! are of the same form
we consider the general problem

Y,t2Bu0,z~z,t !Y5CY,zz, Y~z561/2!50 ~20!

with constantsB andC (.0). From Floquet theory the so-
lution of ~20! can be written in the formY5exp(st)y(z,t)
wheres is the Floquet exponent, which plays the role of the
growth rate for the perturbation, andy(z,t) is a
2p-periodic function int.

The solution for the case of oscillatory Couette flow~14!,
whereu0,z is independent ofz, has the form

Y5exp~2Cp2t !exp~Ba sint !cos~pz!. ~21!

Since the constantC.0 one has negative growth rate for
both perturbations at all amplitudes of the flow. Therefore the
solutionu5ufl , f50 ~basic state! is linearly stable.

Let us now consider the more general case when
u0,z5a f(z)cost. In particular, f (z)58z for Poiseuille flow.
The marginal stability conditions50 corresponds to the
situation where the equation

y,t2aB f~z!costy5Cy,zz, y~z561/2!50 ~22!

has a 2p-time periodic solution. The coefficientC is propor-
tional to e51/tdv @see Eqs.~16! and ~17!# and is therefore
very small for frequencies large compared to the inverse di-
rector relaxation timetd (td'102 s for g1'1021 N s/m2,
d'1024 m, andK11'10211 N!. Thus we will search for a
solution of ~22! in the formy5y01Cy11••• , C!1 with
2p-time periodicyi satisfying the boundary conditions for
y. At lowest orderC0 one has

y05Y0~z!eaBf~z!sint, ~23!

where the functionY0(z) remains undetermined at this order.
From the boundary conditions followsY0(z561/2)50. At
orderC1 one has

y1,t2aB f~z!costy15y0,zz, ~24!

which gives

y15eaBf sint$@Y091 1
2 ~aB f8!2Y0#t22aB f8Y08cost

2aB f9Y0cost2
1
4 ~aB f8!2Y0sin2t%. ~25!

From the periodicity condition fory1 follows that the func-
tion Y0(z) must satisfy the equation

Y091
1

2
~aB f8!2Y050, Y0~z561/2!50. ~26!

It is well known that there exists a smallest~real and posi-
tive! eigenvaluea for the nontrivial solution of the problem
with given function f 8(z)Þ0. Therefore for any flow with
u0,zzÞ0 one expects instability of the basic state at some
critical value ofa.

For Poiseuille flow one hasf 858 and from Eq.~26! fol-
lows Y05coskz, where k58aB/A2. From the boundary
conditions one hask5p and therefore
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ac5
pA2
8B

. ~27!

Above the critical amplitudeac the solution of Eq.~20! will
grow in time and therefore the flow alignment solution
(u5ufl ,f50) becomes unstable. With standard MBBA ma-
terial parameters ~see Appendix B! one finds
B5K8(ufl)50.20 andB50.06 for theu1 andf1 perturba-
tions, respectively, so that the lowest critical amplitude
ac52.78 corresponds to theu1 ~in-plane! perturbation.

From the above linear stability analysis follows that the
flow alignment (u5ufl , f50) induced by boundary condi-
tions is stable for low-frequency oscillatory Couette flow. On
the other hand, for oscillatory Poiseuille flow this solution
becomes unstable at some critical amplitude as well as for a
general flow withu0,zzÞ0.

The critical amplitudeac for the instability of the solution
(u5ufl , f50) can be also obtained in the framework of our
recently developed time-averaging method@20,21#. By intro-
ducing a ‘‘slow’’ time T5et that modulates the periodic be-
havior on the ‘‘fast’’ time scalet, so that u5u(z,t,T),
f5f(z,t,T), one can formulate a systematic perturbation
expansion

u5u01eu11 . . . , f5f01ef11 . . . , ~28!

where all functionsu i , f i are periodic int. At order e0,
corresponding to neglect of the elastic coupling, one has the
solutions

u052tan21H l1/2tanhF l1/2

12l
g~z,t !1

1

2
lnUl1/21tanh

l1/22tanhUG J ,
~29a!

f05tan21H tanxFK~u0!

K~h! G1/2J , ~29b!

where g(z,t)5*0
t u,zdt and u05u0(h,g), f05f0(x,h,g)

are periodic functions int. Thus, from Eqs.~29!, one has a
continuous two-parameter family of periodic oscillations of
u and f parametrized by their valuesh and x at
t52pn/v, which are now allowed to depend onz and slow
time T ~‘‘slow angles’’! and are undetermined at this order.
Note thatu0 oscillates aroundh andf0 aroundx, but, in
general,̂ u0&Þh and^f0&Þx, i.e., the director oscillation is
in general not symmetric around its position att52pn/v
where the flow displacement reverses. However, for small
oscillation amplitude the difference becomes inessential.
From the solvability conditions for the inhomogeneous linear
equations at first order ine one obtains evolution equations
for the slow anglesh andx @see Eqs.~17! and ~18! in Ref.
@21##. The linearization of the evolution equations around the
flow-alignment angleh5ufl1h1(z), x5x1(z) gives with
u5u0 from Eq. ~15! for the case of oscillatory Poiseuille
flow

h1,zz132a2K82~ufl!h150, h1~z561/2!50. ~30!

~The equation forx1 is omitted.! The solution of Eq.~30! is
h15cospz and the corresponding amplitudeac5pA2/
8K8(ufl) is exactly the same as Eq.~27! with B5K8(ufl) for
the u1 perturbation.

The result obtained here is not unexpected in view of our
previous results showing that Poiseuille-type oscillatory flow
always exerts a destabilizing torque on the~nearly! flow-
aligned director. The present analysis complements the pre-
vious one by giving the threshold in a situation with stabi-
lizing boundary conditions. What will the full nonlinear
evolution of the director be at amplitudesa of order of the
critical one? Within the flow plane it has mainly a tendency
towards the homeotropic~time-averaged! position @20#, but
then there is the possibility of an out-of-plane transition,
which could occur already at substantially lower amplitudes
@21#.

IV. NONLINEAR BULK OSCILLATIONS
WITH MAGNETIC FIELD

In order to gain some understanding of the nonlinear di-
rector evolution we first replace boundary conditions by a
magnetic field of strengthh applied in the appropriate direc-
tion characterized bym̂. For oscillatory Poiseuille flow one
can then resort to a much simpler spatially homogeneous
situation. Taking the prescribed velocity field~15! ~valid for
low frequencies! and following our time-averaging proce-
dure~see Ref.@21#! one obtains from Eqs.~3! and~5! for the
slow anglesh, x, which are now spatially uniform, the evo-
lution equations

h ,T5B1~h,x,h,m̂!, ~31a!

x ,T5B2~h,x,h,m̂!, ~31b!

whereT5et and the functions

B15a232$@a1~h,x!1a5~h,x!M ~x!#K8~h!K~h!

1a3~h,x!M ~x!@K9~h!K~h!1K82~h!M 8~x!#

1a2~h,x!K2~h!1a4~h,x!@K8~h!M ~x!#2%

1h2a6~h,x,m̂!, ~32a!

B25a232$@b1~h,x!1b5~h,x!M ~x!#K8~h!K~h!

1b3~h,x!M ~x!@K9~h!K~h!1K82~h!M 8~x!#

1b2~h,x!K2~h!1b4~h,x!@K8~h!M ~x!#2%

1h2b6~h,x,m̂! ~32b!

are obtained from the general expressions in the approxima-
tion of lowest-order time-Fourier expansion for the ‘‘fast’’
director oscillations up to the second harmonic of the re-
sponse to oscillatory flow. The functionsai , bi are defined in
Appendix A. We remind the reader thatu oscillate around
h andf aroundx ~if there is out-of-plane motion, i.e., if
xÞ0) and u5h, f5x whenever the flow displacement
goes through zero. The coupled ordinary differential equa-
tions ~31! exhibit an interesting bifurcation scenario with a
regime of slow limit-cycle oscillations when the magnetic
field is applied in the flow plane at the flow-alignment angle
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ufl . The trajectories of the system~31! in (h,x) phase space
are plotted schematically for this case in Fig. 1 for different
values ofa/h @from Eqs.~32! one sees that this is the rel-
evant control parameter when time is rescaled appropriately#.
For values ofa/h,1.9 ~for MBBA parameters! @Fig. 1~a!#,
corresponding to a strong effect of the magnetic field com-
pared to the influence of the oscillatory flow, one has only
one attractor (h5ufl , x50), corresponding to the flow-

alignment solution (u5ufl , f50) whereas all the other
fixed points are unstable. In particular, there is a saddle point
(h5usp , x50) and an unstable spiral pointA in an out-of-
plane position~note that by the symmetryh→2h and, sepa-
rately, x→2x, one has twofold and fourfold degeneracy!.
With increasinga/h the flow-alignment solution becomes
unstable and a large stable limit cycle appears through a
homoclinic bifurcation from the saddle point ata/h51.9
@Fig. 1~b!#. This limit cycle corresponds to a slow-time peri-
odic out-of-plane motion of the time-averaged~over the os-
cillatory flow period! director orientation. Further increase of
a/h leads to a reduction of the limit cycle and increase of its
frequency. It disappears ata/h52.27 through a forward
Hopf bifurcation from the spiral pointA ~we have followed
the bifurcation in the reverse sense!. Beyond that pointA is
stable@Fig. 1~c!# and one has a constant time-averaged out-
of-plane director orientation which is characterized~approxi-
mately! by hA , xA . In addition,usp and ufl cross through
each other ata/h52.52 ~for MBBA parameters!, thereby
exchanging their stability properties.

The bifurcation diagram for the stable solutions (h,x) of
the system~31! is plotted in Fig. 2. In the region of the
slow-time oscillations the minima and maxima ofh andx
are given. The phenomenon of slow-time director oscilla-
tions exist in a narrow region of the parametera/h and is
very sensitive to the elastic constant anisotropy. Thus, in the
one-constant approximation (K115K225K33) one has no
out-of-plane attractors.

V. NUMERICAL SIMULATIONS

Direct simulations for oscillatory Couette and Poiseuille
flow were performed using central finite differences for the
spatial derivatives and the predictor-corrector scheme for the
time discretization. All calculations were made for MBBA
material parameters~see Appendix B! and flow frequencies 5
Hz< f<100 Hz.

For flow-alignment boundary conditionsu(z561/2)
5ufl , f(z561/2)50 the calculations for the Couette case
confirm that there are no homogeneous in-plane and out-of-
plane instabilities of the solutionu5ufl , f50 up to large
flow amplitudes (a510). Also for homeotropic and planar

FIG. 1. Plot of trajectories in (h,x) phase space for the solu-
tions of the evolution equations~31! for a/h51 ~a!, a/h52 ~b!,
anda/h53 ~c!. Magnetic fieldh at the flow-alignment angleufl .
Note that the director performs rapid oscillations with the external
frequencyv/2p around the position (h,x); see Eqs.~29!.

FIG. 2. Bifurcation diagram for the solutions (h, x) of the
system~31!. Magnetic fieldh at the flow-alignment angleufl .
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boundary conditions no instabilities were found, in agree-
ment with the predictions of our recent analysis@20,21#.

The stability properties of in-plane oscillations with re-
spect to out-of-plane motion under oscillatory Poiseuille flow
have already been studied for homeotropically oriented nem-
atics@21#. In the frequency range considered we did not find
an essential difference in the critical amplitude between the
results obtained using the prescribed velocity field@21# and
full numerical simulations with the self-consistent velocity
field. Note that for steady Poiseuille flow there is also an
out-of-plane transition in the homeotropic configuration@8#.
The velocity threshold there was found to be lower than for
the oscillatory flow.

For planar boundary conditions the~small! in-plane direc-
tor oscillations~between6ufl) are found to be stable under
oscillatory Poiseuille flow with respect to out-of-plane dis-
tortions up to large values of the flow amplitude.

We find that the flow-alignment solutionu5ufl , f50
becomes unstable in the case of oscillatory Poiseuille flow at
some critical amplitude corresponding to a critical pressure
gradientDP/Dx. The critical amplitude for the instability
decreases slightly with increasing frequency (2.5>ac>2.3
for 5 Hz<f<100 Hz! which is near the valueac52.78 ob-
tained from the linear stability analysis.

The in-plane and out-of-plane director distortions can be
described by the averaged~over the oscillatory flow period!
angleŝ um& and^fm&, respectively, taken at the midplane of
the nematic layer (z50). Starting with different initial direc-
tor distributions the stable long-time solutions of the system
~3!–~6! have been computed. The bifurcation diagram as a
function of the oscillatory Poiseuille flow amplitudea is
shown in Fig. 3. In a narrow region of the flow amplitudes
slightly below the out-of-plane instability threshold the solu-
tions with the slow-time oscillations of the director distor-
tions exist~the minima and maxima of̂um& and ^fm& are
plotted!. Clearly the situation is analogous to that discussed
in the preceding section, where the boundary conditions are
replaced by a magnetic field, but the range of existence of the
slow-time oscillations here is smaller. The typical temporal
evolution of^um&, ^fm& is shown in Fig. 4. The period of the
oscillations is of the order of the director relaxation timetd
~in physical units!. In Fig. 5 we plot the periodT of the

slow-time oscillations as a function of amplitudea for dif-
ferent frequencies of the oscillatory Poiseuille flow. The
range of existence of the slow-time oscillatory solutions in-
creases slightly with increasing flow frequency.

From the experimental point of view a more realistic situ-
ation is that of planar boundary conditions for the director
@u(z561/2)50, f(z561/2)50#. A similar bifurcation
scenario has been observed when a magnetic fieldh50.5
was added in the flow plane at an angleum5p/4 with re-
spect to thex axis. Then, at low amplitudes of oscillatory
Poiseuille flow, one has in-plane director oscillations which
do not exceed the6ufl limit. With increasing flow amplitude
a limit cycle corresponding to the slow director oscillations
appears as in the previous cases through a homoclinic bifur-
cation. Further increase of the amplitudea leads to a reduc-
tion and disappearance of the limit cycle. The critical flow
amplitudea for the limit cycle instability depends on the
value of magnetic fieldh and remains very sensitive to the
anisotropy of the elastic constants.

VI. CONCLUSION

For the first time~to our knowledge! a slow time-periodic
director motion has been found theoretically. The oscillations

FIG. 3. Bifurcation diagram for̂ um&, ^fm&. Flow alignment
boundary conditions; frequency of Poiseuille flowf510 Hz.

FIG. 4. Slow-time out-of-plane director oscillations. Frequency
of Poiseuille flowf510 Hz; amplitudea52.325.

FIG. 5. Dependence of the period of slow-time oscillationsT on
the amplitude of Poiseuille flow for different frequencies.
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appear with increasing amplitude of low-frequency Poi-
seuille flow through a homoclinic bifurcation and disappear
through a Hopf bifurcation. The effect depends strongly on
the anisotropy of elastic constants and in fact disappears in
the one-constant approximation.

For low-frequency oscillatory Couette flow with its uni-
form shear rate no homogeneous instabilities are found. In-
creasing the flow frequency leads to deviations from unifor-
mity and, therefore, the appearance of a time-averaged
torque acting on the director@20,21#. This may lead to the
experimentally observed slow director oscillations in a way
similar to the one found above. Although the resulting rota-
tion of the in-plane director component is confined to at most
a half plane~there are two or four symmetry-equivalent
states! it can give the impression of full 2p rotations, as
reported in@18,19#, because the optical detection system in-
volving birefrengence is insensitive to rotations by multiples
of p/2. Work on high-frequency shear flow is in progress.

To test our predictions directly experiments involving
plane oscillatory Poiseuille flow are desirable. We suggest
doing this with planar director alignment and a magnetic
field applied in the shear plane at an angle of about 45° with
respect to thex axis.
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APPENDIX A: COEFFICIENTS IN NEMATODYNAMIC
EQUATIONS

a1~u,f!5cos2u1k2sin
2u1~k32k2!sin

2u cos2f,
~A1!

a2~u,f!5@k2211~k32k2!cos
2f#sinu cosu,

a3~u,f!5~k221!sinu cosu tanf,

a4~u,f!5~2k22k321!)sinu cosu,

a5~u,f!522@cos2u1k2sin
2u

12~k32k2!sin
2u cos2f#tanf,

a6~u,f,m̂!5p2~cosu cosfmx1sinfmy1sinu cosfmz!

3~2sinumx1cosumz!secf,

b1~u,f!5~k221!sinu cosu sinf cosf,

b2~u,f!5@sin2u1k2cos
2u12~k32k2!sin

2u cos2f#

3sinf cosf,

b3~u,f!5sin2u1k2cos
2u1~k321!sin2u cos2f,

b4~u,f!52~k321!sin2u sinf cosf,

b5~u,f!522 sinu cosu~k22k3cos
2f2sin2f!,

b6~u,f,m̂!5p2~cosu cosfmx1sinfmy1sinu cosfmz!

3~2cosu sinfmx1cosfmy2sinu sinfmz!,

2~2a2!c1~u,f!5a41~a52a2!sin
2u cos2f,

2~2a2!c2~u,f!5a31a612a1sin
2u cos2f,

andki5Kii /K11.

APPENDIX B: MATERIAL PARAMETERS

The numerical computations are carried out for the fol-
lowing MBBA ~4-methoxybenzylidene-48-n-butylaniline!
material parameters at 25 °C@24,25#.

Viscosity coefficients are in units of 1023 N s/m2 :

a15218.1, a252110.4, a3521.1, a4582.6,

a5577.9, a65233.6.

Elasticity coefficients are in units of 10212 N :

K1156.66, K2254.2, K3358.61,

and mass densityr5103 kg/m3. We used the layer thickness
d520 mm.
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